Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractFrom a gym workout, to deciding whether to persevere at work, many activities require us to persist in deciding that rewards are ‘worth the effort’ even as we become fatigued. However, studies examining effort-based decisions typically assume that the willingness to work is static. Here, we use computational modelling on two effort-based tasks, one behavioural and one during fMRI. We show that two hidden states of fatigue fluctuate on a moment-to-moment basis on different timescales but both reduce the willingness to exert effort for reward. The value of one state increases after effort but is ‘recoverable’ by rests, whereas a second ‘unrecoverable’ state gradually increases with work. The BOLD response in separate medial and lateral frontal sub-regions covaried with these states when making effort-based decisions, while a distinct fronto-striatal system integrated fatigue with value. These results provide a computational framework for understanding the brain mechanisms of persistence and momentary fatigue.

Original publication

DOI

10.1038/s41467-021-24927-7

Type

Journal article

Journal

Nature Communications

Publisher

Springer Science and Business Media LLC

Publication Date

28/07/2021

Volume

12