Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PurposeGlaucoma is an eye disease that is the most common cause of irreversible blindness worldwide. It has been suggested that gut microbiota can produce reactive oxygen species and pro-inflammatory cytokines that may travel from the gastric mucosa to distal sites, for example, the optic nerve head or trabecular meshwork. There is evidence for a gut-eye axis, as microbial dysbiosis has been associated with retinal diseases. We investigated the microbial composition in patients with glaucoma and healthy controls. Moreover, we analyzed the association of the gut microbiome with intraocular pressure (IOP; risk factor of glaucoma) and vertical cup-to-disc ratio (VCDR; quantifying glaucoma severity).MethodsThe discovery analyses included participants of the Rotterdam Study and the Erasmus Glaucoma Cohort. A total of 225 patients with glaucoma and 1247 age- and sex-matched participants without glaucoma were included in our analyses. Stool samples were used to generate 16S rRNA gene profiles. We assessed associations with 233 genera and species. We used data from the TwinsUK and the Study of Health in Pomerania (SHIP) to replicate our findings.ResultsSeveral butyrate-producing taxa (e.g. Butyrivibrio, Caproiciproducens, Clostridium sensu stricto 1, Coprococcus 1, Ruminococcaceae UCG 007, and Shuttleworthia) were less abundant in people with glaucoma compared to healthy controls. The same taxa were also associated with lower IOP and smaller VCDR. The replication analyses confirmed the findings from the discovery analyses.ConclusionsLarge human studies exploring the link between the gut microbiome and glaucoma are lacking. Our results suggest that microbial dysbiosis plays a role in the pathophysiology of glaucoma.

Original publication

DOI

10.1167/iovs.65.2.7

Type

Journal article

Journal

Investigative ophthalmology & visual science

Publication Date

02/2024

Volume

65

Addresses

Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

Keywords

Optic Disk, Humans, Glaucoma, Butyrates, RNA, Ribosomal, 16S, Dysbiosis