Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The class I CD8 positive T-cell response is involved in a number of conditions in which artificial down-regulation and control would be therapeutically beneficial. Such conditions include a number of autoimmune diseases and graft rejection in transplant patients. Although the CD8 T-cell response is dominated by the TCR-pMHC interaction, activation of T cells is in most cases also dependent on a number of associated signalling molecules. Previous work has demonstrated the ability of one such molecule (CD8) to act as an antagonist to T-cell activation if added in soluble form. Therefore, a high-affinity mutant CD8 (haCD8) has been developed with the aim of developing a therapeutic immunosuppressor. In order to fully understand the nature of the haCD8 interaction, this protein was crystallized using the sitting-drop vapour-diffusion method. Single haCD8 crystals were cryocooled and used for data collection. These crystals belonged to space group P6 422 (assumed by similarity to the wild type), with unit-cell parameters a = 101.08, c = 56.54 Å. V M calculations indicated one molecule per asymmetric unit. A 2 Å data set was collected and the structure is currently being determined using molecular replacement. © 2005 International Union of Crystallography. All rights reserved.

Original publication

DOI

10.1107/S1744309105002988

Type

Journal article

Journal

Acta Crystallographica Section F: Structural Biology and Crystallization Communications

Publication Date

01/12/2005

Volume

61

Pages

285 - 287