Preconditioning of Cardiosphere-Derived Cells with Hypoxia or Prolyl-4-Hydroxylase Inhibitors Increases Stemness and Decreases Reliance on Oxidative Metabolism
Tan SC., Gomes RSM., Yeoh KK., Perbellini F., Malandraki-Miller S., Ambrose L., Heather LC., Faggian G., Schofield CJ., Davies KE., Clarke K., Carr CA.
Cardiosphere-derived cells (CDCs), which can be isolated from heart explants, are a promising candidate cell source for infarcted myocardium regeneration. However, current protocols used to expand CDCs require at least 1 month in vitro to obtain sufficient cells for transplantation. We report that CDC culture can be optimized by preconditioning the cells under hypoxia (2% oxygen), which may reflect the physiological oxygen level of the stem cell niche. Under hypoxia, the CDC proliferation rate increased by 1.4-fold, generating 6 × 106 CDCs with higher expression of cardiac stem cell and pluripotency gene markers compared to normoxia. Furthermore, telomerase (TERT), cytokines/ligands involved in stem cell trafficking (SDF/CXCR-4), erythro-poiesis (EPO), and angiogenesis (VEGF) were increased under hypoxia. Hypoxic preconditioning was mimicked by treatment with two types of hypoxia-inducible factor (HIF) prolyl-4-hydroxylase inhibitors (PHDIs): dimethyloxaloylglycine (DMOG) and 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetic acid (BIC). Despite the difference in specificity, both PHDIs significantly increased c-Kit expression and activated HIF, EPO, and CXCR-4. Furthermore, treatment with PHDIs for 24 h increased cell proliferation. Notably, all hypoxic and PHDI-preconditioned CDCs had decreased oxygen consumption and increased glycolytic metabolism. In conclusion, cells cultured under hypoxia could have potentially enhanced therapeutic potential, which can be mimicked, in part, by PHDIs.