Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AimsGastrointestinal (GI) α‐synuclein (aSyn) detection as a potential biomarker of Parkinson's disease (PD) is challenged by conflicting results of recent studies. To increase sensitivity and specificity, we applied three techniques to detect different conformations of aSyn in GI biopsies obtained from a longitudinal, clinically well‐characterized cohort of PD patients and healthy controls (HC).MethodsWith immunohistochemistry (IHC), we used antibodies reactive for total, phosphorylated and oligomeric aSyn; with aSyn proximity ligation assay (AS‐PLA), we targeted oligomeric aSyn species specifically; and with paraffin‐embedded tissue blot (AS‐PET‐blot) we aimed to detect fibrillary, synaptic aSyn.ResultsA total of 163 tissue blocks were collected from 51 PD patients (113 blocks) and 21 HC (50 blocks). In 31 PD patients, biopsies were taken before the PD diagnosis (Prodromal); while in 20 PD patients biopsies were obtained after diagnosis (Manifest). The majority of tissues blocks were from large intestine (62%), followed by small intestine (21%), stomach (10%) and oesophagus (7%). With IHC, four staining patterns were detected (neuritic, ganglionic, epithelial and cellular), while two distinct staining patterns were detected both with AS‐PLA (cellular and diffuse signal) and with AS‐PET‐blot (aSyn‐localized and pericrypt signal). The level of agreement between different techniques was low and no single technique or staining pattern reliably distinguished PD patients (Prodromal or Manifest) from HC.ConclusionsOur study suggests that detection of aSyn conformational variants currently considered pathological is not adequate for the diagnosis or prediction of PD. Future studies utilizing novel ultrasensitive amyloid aggregation assays may increase sensitivity and specificity.

Original publication

DOI

10.1111/nan.12486

Type

Journal article

Journal

Neuropathology and Applied Neurobiology

Publisher

Wiley

Publication Date

12/2018

Volume

44

Pages

722 - 736