Search results
Found 7157 matches for
Concepts and Misconceptions about the Polygenic Additive Model Applied to Disease
It is nearly one hundred years, since R.A. Fisher published his now famous paper that started the field of quantitative genetics. That paper reconciled Mendelian genetics (as exemplified by Mendel's peas) and the biometrical approach to quantitative traits (as exemplified by the correlation and regression approaches from Galton and Pearson), by showing that a simple model of many genes of small effects, each following Mendel's laws of segregation and inheritance, plus environmental variation could account for the observed resemblance between relatives. In this review, we discuss a number of concepts and misconceptions about the assumptions and limitations of polygenic models of common diseases in human populations.
Hypermethylation in the ZBTB20 gene is associated with major depressive disorder
Abstract Background Although genetic variation is believed to contribute to an individual’s susceptibility to major depressive disorder, genome-wide association studies have not yet identified associations that could explain the full etiology of the disease. Epigenetics is increasingly believed to play a major role in the development of common clinical phenotypes, including major depressive disorder. Results Genome-wide MeDIP-Sequencing was carried out on a total of 50 monozygotic twin pairs from the UK and Australia that are discordant for depression. We show that major depressive disorder is associated with significant hypermethylation within the coding region of ZBTB20, and is replicated in an independent cohort of 356 unrelated case-control individuals. The twins with major depressive disorder also show increased global variation in methylation in comparison with their unaffected co-twins. ZBTB20 plays an essential role in the specification of the Cornu Ammonis-1 field identity in the developing hippocampus, a region previously implicated in the development of major depressive disorder. Conclusions Our results suggest that aberrant methylation profiles affecting the hippocampus are associated with major depressive disorder and show the potential of the epigenetic twin model in neuro-psychiatric disease.
DNA methylation age of blood predicts all-cause mortality in later life
Abstract Background DNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age. Results Here we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43. Conclusions DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.
A genome wide survey supports the involvement of large copy number variants in schizophrenia with and without intellectual disability
AbstractBackgroundCopy number variants (CNVs) have been shown to play a role in schizophrenia and intellectual disability.MethodsWe compared the CNV burden in 66 patients with intellectual disability and no symptoms of psychosis (ID‐only) with the burden in 64 patients with intellectual disability and schizophrenia (ID + SCZ). Samples were genotyped on three plates by the Broad Institute using the Affymetrix 6.0 array.ResultsFor CNVs larger than 100 kb, there was no difference in the CNV burden of ID‐only and ID + SCZ. In contrast, the number of duplications larger than 1 Mb was increased in ID + SCZ compared to ID‐only. We detected seven large duplications and two large deletions at chromosome 15q11.2 (18.5–20.1 Mb) which were all present in patients with ID + SCZ. The involvement of this region in schizophrenia was confirmed in Scottish samples from the ISC study (N = 2,114; 1,130 cases and 984 controls). Finally, one of the patients with schizophrenia and low IQ carrying a duplication at 15q11.2, is a member of a previously described pedigree with multiple cases of mild intellectual disability, schizophrenia, hearing impairment, retinitis pigmentosa and cataracts. DNA samples were available for 11 members of this family and the duplication was present in all 10 affected individuals and was absent in an unaffected individual.ConclusionsDuplications at 15q11.2 (18.5–20.1 Mb) are highly prevalent in a severe group of patients characterized by intellectual disability and comorbid schizophrenia. It is also associated with a phenotype that includes schizophrenia, low IQ, hearing and visual impairments resembling the spectrum of symptoms described in “ciliopathies.” © 2013 Wiley Periodicals, Inc.
Genetic and environmental exposures constrain epigenetic drift over the human life course
Epigenetic mechanisms such as DNA methylation (DNAm) are essential for regulation of gene expression. DNAm is dynamic, influenced by both environmental and genetic factors. Epigenetic drift is the divergence of the epigenome as a function of age due to stochastic changes in methylation. Here we show that epigenetic drift may be constrained at many CpGs across the human genome by DNA sequence variation and by lifetime environmental exposures. We estimate repeatability of DNAm at 234,811 autosomal CpGs in whole blood using longitudinal data (2–3 repeated measurements) on 478 older people from two Scottish birth cohorts—the Lothian Birth Cohorts of 1921 and 1936. Median age was 79 yr and 70 yr, and the follow-up period was ∼10 yr and ∼6 yr, respectively. We compare this to methylation heritability estimated in the Brisbane Systems Genomics Study, a cross-sectional study of 117 families (offspring median age 13 yr; parent median age 46 yr). CpG repeatability in older people was highly correlated (0.68) with heritability estimated in younger people. Highly heritable sites had strong underlying cis-genetic effects. Thirty-seven and 1687 autosomal CpGs were associated with smoking and sex, respectively. Both sets were strongly enriched for high repeatability. Sex-associated CpGs were also strongly enriched for high heritability. Our results show that a large number of CpGs across the genome, as a result of environmental and/or genetic constraints, have stable DNAm variation over the human lifetime. Moreover, at a number of CpGs, most variation in the population is due to genetic factors, despite some sites being highly modifiable by the environment.