Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin deficiency. In normal muscle, dystrophin helps maintain sarcolemmal stability. Dystrophin also recruits neuronal nitric oxide synthase (nNOS) to the sarcolemma. Failure to anchor nNOS to the membrane leads to functional ischemia and aggravates muscle disease in DMD. Over the past two decades, a great variety of therapeutic modalities have been explored to treat DMD. A particularly attractive approach is to increase utrophin expression. Utrophin shares considerable sequence, structural and functional similarity with dystrophin. Here, we test the hypothesis that utrophin also brings nNOS to the sarcolemma. Full-length utrophin cDNA was expressed in dystrophin-deficient mdx mice by gutted adenovirus or via transgenic overexpression. Subcellular nNOS localization was determined by immunofluorescence staining, in situ nNOS activity staining and microsomal preparation western blot. Despite supra-physiological utrophin expression, we did not detect nNOS at the sarcolemma. Furthermore, transgenic utrophin overexpression failed to protect mdx muscle from exercise-associated injury. Our results suggest that full-length utrophin cannot anchor nNOS to the sarcolemma. This finding might have important implications for the development of utrophin-based DMD therapies.

Original publication




Journal article


Journal of Cell Science


The Company of Biologists

Publication Date





2008 - 2013