Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractObjectivesRapid eye movement sleep behavior disorder (RBD) patients have a high risk of developing a Parkinsonian disorder, offering an opportunity for neuroprotective intervention. Predicting near‐term conversion, however, remains a challenge. Dopamine transporter imaging, while informative, is expensive and not widely available. Here, we investigate the utility of susceptibility‐weighted MRI (SWI) to detect abnormalities of the substantia nigra in RBD, and explore their association with striatal dopaminergic deficits.MethodsSWI of the substantia nigra was performed in 46 RBD patients, 27 Parkinson’s patients, and 32 control subjects. Dorsal nigral hyperintensity (DNH) was scored by two blinded raters, and separately quantified using a semiautomated process. Forty‐two RBD patients were also imaged with 123I‐ioflupane single‐photon emission computed tomography (DaT SPECT/CT).ResultsConsensus visual DNH classification was possible in 87% of participants. 27.5% of RBD patients had lost DNH, compared with 7.7% of control subjects and 96% of Parkinson’s patients. RBD patients lacking DNH had significantly lower putamen dopaminergic SPECT/CT activity compared to RBD patients with DNH present (specific uptake ratios 1.89 vs. 2.33, P = 0.002). The mean quantified DNH signal intensity declined in a stepwise pattern, with RBD patients having lower intensity than controls (0.837 vs. 0.877, P = 0.01) but higher than PD patients (0.837 vs. 0.765, P < 0.001).InterpretationOver one quarter of RBD patients have abnormal substantia nigra SWI reminiscent of Parkinson’s, which is associated with a greater dopaminergic deficit. This modality may help enrich neuroprotective trials with early converters.

Original publication

DOI

10.1002/acn3.50962

Type

Journal article

Journal

Annals of Clinical and Translational Neurology

Publisher

Wiley

Publication Date

01/2020

Volume

7

Pages

26 - 35