Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectiveTo examine the role of genes identified through genome-wide association studies (GWASs) of Parkinson disease (PD) in the risk of isolated REM sleep behavior disorder (iRBD).MethodsWe fully sequenced 25 genes previously identified in GWASs of PD in a total of 1,039 patients with iRBD and 1,852 controls. The role of rare heterozygous variants in these genes was examined with burden tests. The contribution of biallelic variants was further tested. To examine the potential effect of rare nonsynonymous BST1 variants on the protein structure, we performed in silico structural analysis. Finally, we examined the association of common variants using logistic regression adjusted for age and sex.ResultsWe found an association between rare heterozygous nonsynonymous variants in BST1 and iRBD (p = 0.0003 at coverage >50× and 0.0004 at >30×), driven mainly by 3 nonsynonymous variants (p.V85M, p.I101V, and p.V272M) found in 22 (1.2%) controls vs 2 (0.2%) patients. All 3 variants seem to be loss-of-function variants with a potential effect on the protein structure and stability. Rare noncoding heterozygous variants in LAMP3 were also associated with iRBD (p = 0.0006 at >30×). We found no association between rare heterozygous variants in the rest of genes and iRBD. Several carriers of biallelic variants were identified, yet there was no overrepresentation in iRBD.ConclusionOur results suggest that rare coding variants in BST1 and rare noncoding variants in LAMP3 are associated with iRBD. Additional studies are required to replicate these results and to examine whether loss of function of BST1 could be a therapeutic target.

Original publication

DOI

10.1212/wnl.0000000000011464

Type

Journal article

Journal

Neurology

Publication Date

03/2021

Volume

96

Pages

e1402 - e1412

Addresses

From the Department of Human Genetics (K.M., E.Y., U.R., L.K., G.A.R., Z.G.-O.), Montreal Neurological Institute (K.M., E.Y., U.R., L.K., J.A.R., F.A., S.B.L., D.S., G.A.R., R.B.P., Z.G.-O.), Department of Neurology and Neurosurgery (J.A.R., F.A., S.B.L., D.S., G.A.R., R.B.P., Z.G.-O.), Centre de Recherche en Biologie Structurale (J.-F.T.), and Department of Pharmacology and Therapeutics (J.-F.T.), McGill University, Montréal, Quebec, Canada; Sleep Disorders Unit (I.A.), Pitié Salpêtrière Hospital, Paris Brain Institute and Sorbonne University, France; Oxford Parkinson's Disease Centre (OPDC) (M.T.M.H.) and Nuffield Department of Clinical Neurosciences (M.T.M.H.), University of Oxford, UK; Center for Advanced Research in Sleep Medicine (J.Y.M., J.-F.G., A.D., R.B.P.), Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal; Departments of Psychiatry (J.Y.M.) and Neurosciences (A.D.), Université de Montréal; Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada; National Reference Center for Narcolepsy (Y.D.), Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, France; Clinical Neurology Unit (G.L.G., M.V., F.J., A.B.), Department of Neurosciences, University Hospital of Udine; DMIF (G.L.G.) and Department of Medicine (DAME) (M.V.), University of Udine, Italy; Sleep Disorders Clinic (B.H., A.S., E.H.), Department of Neurology, Medical University of Innsbruck, Austria; Department of Neurology (K.S., D.K.) and Centre of Clinical Neuroscience (K.S., D.K.), Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic; Department of Neurology (W.O., A.J., F.S.-D.), Philipps University, Marburg, Germany; Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia; IRCCS (G.P.), Institute of Neurological Sciences of Bologna; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical Sciences and Public Health (M.F., M.P.), Sleep Disorder Research Center, University of Cagliari, Italy; Paracelsus-Elena-Klinik (B.M., C.T., F.S.-D.), Kassel; Department of Neurosurgery (B.M., C.T.), University Medical Centre Göttingen, Germany; Sleep and Neurology Unit (V.C.D.C.), Beau Soleil Clinic; EuroMov Digital Health in Motion (V.C.D.C.), University of Montpellier IMT Mines Ales; University Lille North of France (C.C.M.), Department of Clinical Neurophysiology and Sleep Center, CHU Lille; Department of Sleep Medicine and Neuromuscular Disorders (A.H.), University of Müenster, Germany; Department of Neurological Sciences (L.F.-S.), Università Vita-Salute San Raffaele, Milan, Italy; Laboratory for Sleep Disorders (F.D., M.V.) and Department of Neurology (F.D., M.V.), St. Dimpna Regional Hospital, Geel; Department of Neurology (F.D.), University Hospital Antwerp, Edegem, Belgium; Sleep Disorder Unit (B.A.), Carémeau Hospital, University Hospital of Nîmes, France; and Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN.

Keywords

Humans, REM Sleep Behavior Disorder, ADP-ribosyl Cyclase, Neoplasm Proteins, Antigens, CD, Polysomnography, Protein Structure, Secondary, Heterozygote, Computer Simulation, Databases, Genetic, Aged, Middle Aged, Female, Male, Genetic Variation, Genome-Wide Association Study, GPI-Linked Proteins, Lysosomal Membrane Proteins