Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Selectivity is a crucial property in small molecule development. Binding site comparisons within a protein family are a key piece of information when aiming to modulate the selectivity profile of a compound. Binding site differences can be exploited to confer selectivity for a specific target, while shared areas can provide insights into polypharmacology. As the quantity of structural data grows, automated methods are needed to process, summarize, and present these data to users. We present a computational method that provides quantitative and data-driven summaries of the available binding site information from an ensemble of structures of the same protein. The resulting ensemble maps identify the key interactions important for ligand binding in the ensemble. The comparison of ensemble maps of related proteins enables the identification of selectivity-determining regions within a protein family. We applied the method to three examples from the well-researched human bromodomain and kinase families, demonstrating that the method is able to identify selectivity-determining regions that have been used to introduce selectivity in past drug discovery campaigns. We then illustrate how the resulting maps can be used to automate comparisons across a target protein family.

Original publication

DOI

10.1021/acs.jcim.1c00823

Type

Journal article

Journal

Journal of chemical information and modeling

Publication Date

01/2022

Volume

62

Pages

284 - 294

Addresses

Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.

Keywords

Humans, Proteins, Binding Sites, Drug Discovery, Polypharmacology, Protein Domains