Plasma circulating microRNAs associated with blood-based immune markers: a population-based study
Leonard S., Karabegović I., Ikram MA., Ahmad S., Ghanbari M.
Abstract MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and different immune-related pathways. There is a great interest in identifying miRNAs involved in immune cell development and function to elucidate the biological mechanisms underlying the immune system, its regulation, and disease. In this study, we aimed to investigate the association of circulating miRNAs with blood cell compositions and blood-based immune markers. Circulating levels of 2083 miRNAs were measured by RNA-sequencing in plasma samples of 1999 participants from the population-based Rotterdam Study collected between 2002 and 2005. Full blood count measurements were performed for absolute granulocyte, platelet, lymphocyte, monocyte, white, and red blood cell counts. Multivariate analyses were performed to test the association of miRNAs with blood cell compositions and immune markers. We evaluated the overlap between predicted target genes of candidate miRNAs associated with immune markers and genes determining the blood immune response markers. First, principal component regression analysis showed that plasma levels of circulating miRNAs were significantly associated with red blood cell, granulocyte, and lymphocyte counts. Second, the cross-sectional analysis identified 210 miRNAs significantly associated (P < 2.82 × 10−5) with neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index. Further genetic look-ups showed that target genes of seven identified miRNAs (miR-1233-3p, miR-149-3p, miR-150-5p, miR-342-3p, miR-34b-3p, miR-4644, and miR-7106-5p) were also previously linked to NLR and PLR markers. Collectively, our study suggests several circulating miRNAs that regulate the innate and adaptive immune systems, providing insight into the pathogenesis of miRNAs in immune-related diseases and paving the way for future clinical applications.