Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Delayed adjustment tasks have recently been developed to examine working memory (WM) precision, that is, the resolution with which items maintained in memory are recalled. However, despite their emerging use in experimental studies of healthy people, evaluation of patient populations is sparse. We first investigated the validity of adjustment tasks, comparing precision with classical span measures of memory across the lifespan in 114 people. Second, we asked whether precision measures can potentially provide a more sensitive measure of WM than traditional span measures. Specifically, we tested this hypothesis examining WM in a group with early, untreated Parkinson's disease (PD) and its modulation by subsequent treatment on dopaminergic medication. Span measures correlated with precision across the lifespan: in children, young, and elderly participants. However, they failed to detect changes in WM in PD patients, either pre‐ or post‐treatment initiation. By contrast, recall precision was sensitive enough to pick up such changes. PD patients pre‐medication were significantly impaired compared to controls, but improved significantly after 3 months of being established on dopaminergic medication. These findings suggest that precision methods might provide a sensitive means to investigate WM and its modulation by interventions in clinical populations.

Original publication

DOI

10.1111/jnp.12052

Type

Journal article

Journal

Journal of Neuropsychology

Publisher

Wiley

Publication Date

09/2015

Volume

9

Pages

319 - 329