Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractMotivation is underpinned by cost-benefit valuations where costs—such as physical effort or outcome risk—are subjectively weighed against available rewards. However, in many environments risks pertain not to the variance of outcomes, but to variance in the possible levels of effort required to obtain rewards (effort risks). Moreover, motivation is often guided by the extent to which cognitive—not physical—effort devalues rewards (effort discounting). Yet, very little is known about the mechanisms that underpin the influence of cognitive effort risks or discounting on motivation. We used two cost-benefit decision-making tasks to probe subjective sensitivity to cognitive effort (number of shifts of spatial attention) and to effort risks. Our results show that shifts of spatial attention when monitoring rapidly presented visual stimuli are perceived as effortful and devalue rewards. Additionally, most people are risk-averse, preferring safe, known amounts of effort over risky offers. However, there was no correlation between their effort and risk sensitivity. We show for the first time that people are averse to variance in the possible amount of cognitive effort to be exerted. These results suggest that cognitive effort sensitivity and risk sensitivity are underpinned by distinct psychological and neurobiological mechanisms.

Original publication




Journal article


Scientific Reports


Springer Science and Business Media LLC

Publication Date